Beispiele ATPL-Prüfungsfragen

Titel: PRINCIPLES OF FLIGHT

Dokument-Nr.: Version: Status: Klassifizierung: Seiten: Verteilung:	DC_PEL_ATPL_091 1.0 Freigegeben Uneingeschränkt 5 Original: JAA Verteiler: Internet
Anlagen:	-
Abstrakt:	Themenbezogene Sammlung von ATPL-Prüfungsfragen, ohne Gewähr auf Aktualität bzw. Vollständigkeit
Gleichbehandlungsklausel:	Der einfacheren Lesbarkeit halber werden personenbezogene Bezeichnungen in grammatikalisch geschlechtsneutraler oder männlicher Form verwendet. Die gewählte Form gilt jedoch stets für beide Geschlechter und soll keinerlei Diskriminierung zum Ausdruck bringen.
Rechtliche Hinweise:	Dieses Dokument sowie die enthaltenen Informationen sind Eigentum der Austro Control. Der Inhalt dieses Dokuments darf ohne Zustimmung des Dokumentinhabers weder kopiert, veröffentlicht oder in irgendeiner Weise an Personen weitergegeben werden, die nicht in der Verteilerliste ausdrücklich angeführt sind Gedruckte Ausgaben dieses Dokuments unterliegen keinem Änderungsdienst, außer dies wurde ausdrücklich am Deckblatt vermerkt. © Austro Control 2008

Europe

- 1 Considering a positive cambered aerofoil, the pitching moment when Cl=0 is:
 - A infinite
 - **B** positive (nose-up).
 - **C** negative (nose-down).
 - D equal to zero.
- 2 The angle between the aeroplane longitudinal axis and the chord line is the:
 - A angle of incidence.
 - **B** glide path angle.
 - **C** angle of attack.
 - D climb path angle.
- 3 Which of the following wing planforms gives the highest local lift coefficient at the wing root?
 - A Elliptical.
 - B Rectangular.
 - **C** Positive angle of sweep.
 - **D** Tapered.
- 4 An aeroplane maintains straight and level flight while the IAS is doubled. The change in lift coefficient will be:
 - **A** x 0.25
 - **B** x 2.0
 - **C** x 0.5
 - **D** x 4.0
- 5 The stall speed increases, when: (all other factors of importance being constant)
 - A weight decreases.
 - **B** pulling out of a dive.
 - C spoilers are retracted.
 - D minor altitude changes occur e.g. 0-10.000 ft.
- 6 In which phase of the take-off is the aerodynamic effect of ice located on the wing leading edge most critical?
 - A The last part of the rotation.
 - B The take-off run.
 - **C** During climb with all engines operating.
 - **D** All phases of the take-off are equally critical.
- 7 Assuming ISA conditions, which statement with respect to the climb is correct ?
 - A At constant TAS the Mach number decreases
 - **B** At constant Mach number the IAS increases
 - **C** At constant IAS the TAS decreases
 - **D** At constant IAS the Mach number increases

- 8 The speed range between high- and low speed buffet:
 - A decreases during a descent at a constant Mach number.
 - **B** is always positive at Mach numbers below MMO.
 - **C** increases during a descent at a constant IAS.
 - D increases during climb.
- 9 When the air is passing through an expansion wave the static temperature will
 - A decrease.
 - B increase.
 - **c** stay constant.
 - D decrease and beyond a certain Mach number start increasing again.
- 10 If the sum of all the moments in flight is not zero, the aeroplane will rotate about the:
 - A centre of gravity.
 - **B** neutral point of the aeroplane.
 - **C** aerodynamic centre of the wing.
 - **D** centre of pressure of the wing.
- **11** Following a disturbance, an aeroplane oscillates about the lateral axis at a constant amplitude. The aeroplane is:
 - A statically stable dynamically neutral
 - B statically unstable dynamically stable
 - C statically stable dynamically unstable
 - D statically unstable dynamically neutral
- **12** The cg of an aeroplane is in a fixed position forward of the neutral point. Speed changes cause a departure from the trimmed position. Which of the following statements about the stick force stability is correct?
 - A An increase of 10kt from the trimmed position at low speed has more effect on the stick force than an increase of 10kt from the trimmed position at high speed.
 - B Increase of speed generates pull forces.
 - **C** Aeroplane nose up trim decreases the stick force stability.
 - **D** Stick force stability is not affected by trim.
- **13** Positive static lateral stability is the tendency of an aeroplane to:
 - A roll to the right in the case of a positive sideslip angle (aeroplane nose to the right).
 - **B** roll to the left in the case of a positive sideslip angle (aeroplane nose to the left).
 - **C** roll to the left in a right turn.
 - **D** roll to the right in a right turn.
- 14 What is the effect of an aft shift of the centre of gravity on (1) static longitudinal stability and (2) the required control deflection for a given pitch change?
 - **A** (1) reduces (2) increases
 - **B** (1) increases (2) increases
 - **C** (1) increases (2) reduces
 - **D** (1) reduces (2) reduces

tion

- **15** Given two identical aeroplanes with wing mounted engines, one fitted with jet engines and the other with counter rotating propellers, what happens following an engine failure?
 - A The same yaw tendency for both aeroplanes regardless of left or right engine failure.
 - **B** More roll tendency for the propeller aeroplane.
 - **C** Less roll tendency for the propeller aeroplane.
 - **D** The same roll tendency for both aeroplanes.
- **16** An aeroplane has a servo tab controlled elevator. What will happen if the elevator jams during flight?
 - A Pitch control is lost.
 - **B** Pitch control sense is reversed.
 - **C** The pitch control forces double.
 - **D** The servo-tab now works as a negative trim-tab.
- **17** Which statement about a jet transport aeroplane is correct during take-off with the cg at the forward limit and the trimmable horizontal stabiliser (THS) positioned at the maximum allowable aeroplane nose down position?
 - A If the THS position is just within the limits of the green band, the take off warning system will be activated.
 - B The rotation will require extra stick force.
 - **C** Rotation will be normal.
 - D Early nose wheel raising will take place.
- 18 What can happen to the aeroplane structure flying at a speed just exceeding VA?
 - A It may suffer permanent deformation if the elevator is fully deflected upwards
 - **B** It may break if the elevator is fully deflected upwards.
 - **C** It may suffer permanent deformation because the flight is performed at too large dynamic pressure.
 - D It will collapse if a turn is made.
- 19 Which definition of propeller parameters is correct?
 - A Geometric pitch is the theoretical distance a propeller blade element would travel in a forward direction during one revolution.
 - **B** Blade angle is the angle between the blade chord line and the propeller axis.
 - **C** Angle of attack is the angle between the blade chord line and the propeller vertical plane.
 - **D** Critical tip velocity is the propeller speed at which flow separation first occurs at some part of the blade.
- 20 Asymmetric propeller blade effect is mainly induced by:
 - A large angles of yaw.
 - **B** large angles of climb.
 - **C** the inclination of the propeller axis to the relative airflow.
 - D high speed.

tion

· Europe ·

c

- **21** A 50 ton twin engine aeroplane performs a straight, steady, wings level climb. If the lift/drag ratio is 12 and the thrust is 60 000N per engine, the climb gradient is: (assume $g = 10m/s^2$)
 - **A** 3.7%.
 - **B** 15.7%.
 - **C** 12%.
 - **D** 24%.
- **22** An aeroplane performs a right turn, the slip indicator is left of neutral. One way to co-ordinate the turn is to apply:
 - A more right rudder.
 - B more left rudder.
 - **C** a higher turn-rate.
 - D less right bank.
- **23** The speed for minimum glide angle occurs at an angle of attack that corresponds to: (assume zero thrust; ^ ... denotes power of ...)
 - A (CL/CD^2)max
 - B (CL^3/CD^2)max
 - C (CL/CD)max
 - **D** CLmax